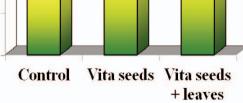
Vital Earth Resources 706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

Crop Results

Vitazyme on Vetch, Spring


Researcher: V. V. Plotnikov **Research organization:** National Academy of Agrarian Sciences *Location*: Vinnytsia State Agricultural Research Station, Vinnytsia, Ukraine (Central Forest and Steppe Region) Variety: Liliana *Soil type*: gray podzolic (organic matter = 2.2%, hydrolyzed N = 8.4 mg/100 g soil, P = 15.8 mg/100 g soil, exchangeable K = 12.4 mg/100 g soil, pH = 5.5) Previous crop: spring barley Planting date: April 17, 2010 Planting rate: 1.8 million seeds/ha Soil preparation: disking to 6 to 8 cm, tillage to 22 cm, cultivation to 4 to 5 cm Experimental design: A spring vetch plot area was divided into four replicates with a control and two Vitazyme treatments, with the objective of determining the effects of the product on vetch yield. 1. Control 2. Vitazyme on seeds 3. Vitazyme on seeds and leaves

Fertilization: 15-15-15 kg/ha of N-P₂O₅-K₂O, incorporated before planting Vitazyme application: Treatments 2 and 3, 1 liter/ha on the seeds at planting on April 17; Treatment 3, 1

liter/ha on the leaves and soil at early bloom on June 9 Yield results:

Treatment	Yield	Yield change	3
	tons/ha	tons/ha	5 Vetch yield, tons/ha
1. Control	1.85		
2. Vitazyme, seeds	2.26	0.41 (+22%)	2
3. Vitazyme, seeds + leaves	2.46	0.61 (+33%)	
Yield increase	with Vit		

22 to 33%

Income results: The single seed treatment produced 1,005 hrn/ha more increase, whereas the seed plus foliar treatment increased yield by 1,305 hrn/ha.

Conclusion: Vitazyme in this replicated Ukranian spring vetch trial produced excellent yield increases using both a seed treatment (22%), and a seed plus foliar treatment (33%). Income increases were commensurate with yield increases: 1,005 and 1,305 hrn/ha, respectively. These results illustrate how effective this biostimulant is to improve the yields and income for vetch in Ukraine.

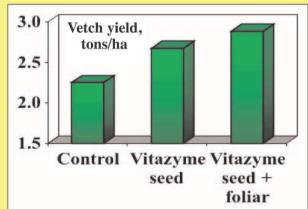
706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2009 Crop Results

Vitazyme on Vetch

<u>Researcher</u>:O.V. Kornijchuk, V.V. Plotnikov, and agronomic scientists<u>Organization</u>:Vinnytsia State Agricultural Experiment Station, Ukraine Academy of Agrarian Sciences,
Vinnytsia, UkraineVinnytsia, Ukraine<u>Location</u>:<u>Variety</u>:Pribuz'ka super elite<u>Planting rate</u>:1.8 million seeds/ha<u>Previous crop</u>:barley<u>Soil type</u>:gray forest steppe soil; in the 0-30 cm layer, 2.2% organic matter, 8.4 mg/100 g of soil "hydrolyzed
nitrogen", 15.8 mg/100g of soil phosphorus, 12.4 mg/100 g of soil exchangeable potassium, and pH=5.5.<u>Planting date</u>:April 14, 2009<u>Tillage</u>:plowing, harrowing, and cultivation<u>Experimental design</u>:A uniform field was divided into Vitayme treated and untreated plots of 1.0 ha, replicated four times, to discover the effect of the product on the vetch cover crop. Both Vitazyme treatments had
a seed treatment, while one of them received an additional foliar/soil application.

1. Control2. Vitazyme on the seeds3. Vitazyme on the seeds and leaves*Fertilization*:10 kg/ha N, 10 kg/ha P $_2O_5$, and 30 kg/ha K $_2O$.3. Vitazyme on the seeds and leaves


<u>Vitazyme application</u>: Both Treatments 2 and 3 received a 1.0 liter/ton of seed Vitazyme application at planting (April 4, 2009), while Treatment 3 received an additional 1.0 liter/ha sprayed on the leaves and soil on June 6, 2009, at branching.

Yield results:

Treatment	Vetch yield	Yield change
	tons/ha	tons/ha
1. Control	2.25	
2. Vitazyme, seeds	2.67	0.42 (+19%)
3. Vitazyme, seeds + leaves	2.88	0.63 (+28%)

Seed + foliar treatment 28%

Income results:

Income increase with Vitazyme, on seeds: 820 hrn/ha Income increase with Vitazyme, on seeds + leaves: 1,040 hrn/ha

<u>Conclusions</u>: This Ukraine study on vetch revealed that the harvested yield was improved considerably with Vitazyme applied to the seeds (+19%), but especially when an additional 1.0 liter/ha was applied to the leaves and soil (+28%). Income also increased substantially with both Vitazyme treatments. Vitazyme is shown to be an excellent material to add to the usual cultural program for more effective use of soil and fertilizer nutrients, to improve yield and profitability.

Vital Earth Resources 706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2009 Crop Results

Vitazyme on Alfalfa, haylage

Researcher:James CalahanLocation:Maryland Farms, Reaboro, Ontario, CanadaVariety:Pick SeedSoil type:clay loamCutting date:July 15, 2009Experimental design:A 50-acre silage field in 2008 was divided into two replicates of treated and untreatedsections, and silage was made from both sections to determine the feeding value of the forage on the secondcutting crop.

1. Control

2. Vitazyme

<u>*Fertilization*</u>: 140 lb/acre of 50% potassium magnesium sulfate (18-11-18% N-P₂O₅-S) and 50% KCl (0-0-60% N-P₂O₅-K₂O) the fall of 2008; 100 lb/acre of $(NH_4)_2SO_4$ + boron (8 lb of 15% B) in the spring of 2009 <u>*Vitazyme application*</u>: Vitazyme (13 oz/acre) + 1 gal/acre of 8-0-0-10% N-P₂O₅-K₂O-Ca after the first cutting <u>*Silage feeding value*</u>: Samples from the untreated hay field, as well as the treated field, were sent to Agri-Food Laboratories, Guelph, Ontario, on July 17, 2009. The results below are reported on a dry basis.

Parameter	Unit	Control	Vitazyme	Change
	%			
Dry matter, as received		69.08	72.33	3.25 (+5%)
Protein (CP), N x 6.25	%	19.05	20.93	1.88 (+10%)
UIP Bypass Est.	% of CP	27.11	30.08	2.97 (+11%)
Fiber				
Acid detergent fiber	%	29.49	27.04	(-) 2.45 (-8%)
Neutral detergent fiber	%	40.38	35.54	(-) 4.84 (-12%)
Lignin	%	4.25	4.44	0.19 (+4%)
Minerals				
Calcium	%	1.48	1.57	0.09 (+6%)
Phosphorus	%	0.27	0.30	0.03 (+11%)
Potassium	%	1.69	1.75	0.06 (+4%)
Magnesium	%	0.17	0.17	0
Sodium	%	0.10	0.03	(-) 0.07 (-70%)
Zinc	ppm	23.80	26.10	2.30 (+10%)
Manganese	ppm	22.62	20.11	(-) 2.51 (-11%)
Copper	ppm	6.90	7.18	0.28 (+4%)
Energy				
TDN (est.)	%	65.34	65.34	0
Non-fiber carbohydrates		30.17	33.13	2.96 (+10%)
Relative feed value		156.27	172.56	16.29 (+10%)
Starch	%	2.85	2.47	(-) 0.38 (-13%)
WTDN		66.48	68.51	2.03 (+3%)
WNEL		1.51	1.58	0.07 (+5%)
WNEG		0.76	0.82	0.06 (+8%)
WNEM		1.48	1.54	0.06 (+4%)
Starch as % of NFC		9.45	7.46	(-) 1.99 (-21%)

<u>Conclusions</u>: In this Canadian haylage trial, comparing Vitazyme to an untreated control, the treated haylage showed a uniformly superior quality across most parameters. The changes were nearly all positive, and the reductions uncovered were generally for parameters that were favorable with a reduction. These changes are summarized below.

Dry matter	+ 5%	Manganese	-11%
Crude protein	+10%	Copper	+4%
UIP bypass	+11%	Non-fiber carbohydrates	+10%
Acid detergent fiber	-8%	Relative feed value	+10%
Neutral detergent fiber	-12%	Starch	-13%
Lignin	+4%	WTDN	+3%
Calcium	+6%	WNEL	+5%
Phosphorus	+11%	WNEG	+8%
Potassium	+4%	WNEM	+4%
Sodium	-70%	Starch, % of NFC	-21%
Zinc	+10%		

Of particular interest in this study is a large 10% increase in relative feed value with Vitazyme, and a 10% increase in protein, with a commensurate 13% drop in starch content. Fiber also dropped, allowing for more nutritional components such as protein and minerals. All essential minerals except manganese increased in content of the haylage.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2006 Crop Results

Vitazyme on *Pennisetum purpureum*, cv. Cuba CT-115

<u>Researchers</u>: R.S. Herrera, M. Garcia, Ana M. Cruz, and A. Romero. <u>Research organization</u>: Animal Science Institute (ICA), Havana, Cuba <u>Location</u>: near Havana, Cuba

Variety: Pennisetum purpureum, cv. Cuba CT-115

<u>Planting date</u>: unknown <u>Soil type</u>: red ferralitic (Eutrustox) <u>Planting rate</u>: unknown

Experimental design: Various Vitazyme regimes were used to evaluate effects of this forage legume on crop yield and growth at different times; these regimes will be outlined with each section below. No irrigation or fertilization were used except for fertilizer in the last trial mentioned. The tests were conducted during Cuba's dry season, except for one established pasture test that was carried out all year, and the fertilizer trial that was completed during the rainy season. The plot setups were of a completely randomized design with four replications.

Crop Establishment Application

Treatment	Dry matter ^a	Change	Leaves ^a	Change	Dead matter ^a	Change
	tons/ha	tons/ha	%	%	%	%
Control	2.69 b	<u> </u>	22.12 b		15.74 a	
1.5 liters/ha at planting	3.10 a	0.41 (+15%)	28.32 a	6.20	6.93 b	(-) 8.81

^aMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test.

Increase in yield with Vitazyme: 15%

The yield was measured at 135 days after planting (full establishment), with a sizable yield increase (15%) from only one Vitazyme application at planting. Also, there were more leaves in the total yield (6.2% more percentage points), and less dead tissue (8.81% less percentage points).

Different Applications At Planting and Shortly After

Treatment Change	Dry matter	^a Change	Height	^a Change	Leaves ^a	
onange	- 12	- 12			01	01
	g/m ²	g/m ²	cm	cm	%	%
1. Control	245.0 ab		73.6		23.2 a	
2. 1.5 l/ha in-furrow	303.2 a	58.2 (+24%)	86.2	12.6 (+17%)	26.9 a	3.7
3. 1.5 l/ha after planting	193.2 bc	(-) 51.8 (-21%)	55.2	(-) 18.4 (-25%)	31.6 a	8.4
4. 1.5 l/ha at 7 days	189.2 bc	(-) 55.8 (-23%)	80.0	6.4 (+9%)	28.6 a	5.4
5. 1.5 l/ha at 14 days	134.4 c	(-) 110.6 (-45%)	75.0	1.4 (+2%)	22.1 a	(-) 1.1
6. 1.5 l/ha at 21 days	183.9 bc	(-)61.1 (-25%)	74.6	1.0 (+1%)	24.5 a	1.3

^aMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test. ***P=0.001

Increase in yield with Vitazyme (in-furrow): 24%

Only Vitazyme applied at 1.5 liter/ha in-furrow at planting caused a yield increase in this study, but the increase was 24%. Height effects on the plants of the various treatments were variable, and there was no significant effect on leaves as a percentage of the biomass.

Treatment	Dry matter ^a	Change	Height ^a	Change
	g/m ²	g/m ²	cm	cm
1. Control	259.8 a		126.7 a	
2. 0.75 liter/ha	338.8 a	79.0 (+30%)	136.6 a	9.9 (+8%)
3. 1.5 liters/ha	284.6 a	24.8 (+10%)	133.3 a	6.6 (+5%)
4. 2.25 liters/ha	143.9 a	(-) 115.9 (-45%)	98.8 b	(-) 27.9 (-22%)
Standard error	46.4 ^{ns}		7.5*	

Dosage Levels At Planting

^aMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test.

***P=0.05.

Increase in yield with 0.75 liter/ha Vitazyme: 30%

Though not significant, the 0.75 and 1.5 liters/ha rates at planting increased grain yield by 30% and 10%, respectively. The high rate of 2.25 liters/ha decreased yield and growth below the control.

Established Pasture Treatments

Treatment	Yield ^a , per cutting dry matter						
	1	2	3	4	5	Total	Change
				tons/ha			
1. Control	2.96 b	3.40	2.05 b	2.53 b	1.05 b	11.99	
2. Vitazyme ^b	3.29 a	3.70	2.60 a	3.00 a	2.42 a	15.01	3.02 (+25%)
Standard error	0.03*	0.23 ^{ns}	0.12*	0.10**	0.07***		

^aMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test. ^b1.5 liters/ha sprayed over the soil after each cutting, every 90 days during the dry season and every 60 days during the rainy season.

***P=0.05; **P=0.05; ***P=0.001.

Increase in yield with Vitazyme: 25%

Vitazyme at every cutting increased grass yield, in all cases but one significantly. The total of all cuttings was 25% greater with Vitazyme than for the untreated control.

Application Timing After Cutting

Treatment	Dry matter*	Change	Leaves*	Change
	tons/ha	tons/ha	%	%
1. Control	3.17 b		32.96 bc	
2. Immediate	3.50 ab	0.33 (+10%)	34.91 ab	1.95 (+6%)
3. At 7 days	3.37 b	0.20 (+6%)	36.95 a	3.99 (+12%)
4. At 14 days	3.75 ab	0.58 (+18%)	36.73 a	3.77 (+11%)
5. At 21 days	3.59 ab	0.42 (+13%)	37.27 a	4.31 (+13%)
6. At 28 days	4.25 a	1.08 (+25%)	33.69 bc	0.73 (+2%)
7. At 35 days	3.79 ab	0.62 (+20%)	32.34 c	(-)0.62 (-2%)
Standard error	0.75		2.10	

^aMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test. *P=0.05.

Increase in yield with Vitazyme at 1 to 35 days after cutting: 10 to 25%

Vitazyme applied at any time after cutting caused an increase in yield, up to 25% at 28 days which was a significant increase. Leaf percentages were even more significant, with all but the immediate, 28, and 35 day applications producing a significant leaf increase. This indicates a likely improvement in palatability of the grass with Vitazyme, since a higher percentage of leaves usually indicates greater digestibility.

Treatment ^a	Dry matter, per cutting					
	1	2	3	Total	Change	
			tons/ha			
1. Control	2.05 d	2.50 b	1.05 d	5.60 d		
2. Vitazyme	2.60 c	3.00 b	2.42 c	8.02 c	2.42 (+43%)	
3. N (150 kg/ha)	3.76 b	6.10 a	4.64 a	14.50 a	8.90 (+159%)	
4. N (150 kg/ha) + Vita	4.34 a	5.80 a	3.68 b	13.82 a	8.22 (+147%)	
5. N (100 kg/ha) + Vita	3.48 b	5.40 a	3.81 b	12.69 b	7.09 (+127%)	
6. N (75 kg/ha) + Vita	3.95 ab	5.90 a	3.75 b	13.60 a	8.00 (+143%)	
7. N (50 kg/ha) + Vita	3.97 ab	5.20 a	3.26 b	12.43 b	6.83 (+122%)	
Standard error	0.14***	0.31***	0.18***	0.21***		

Effects With Nitrogen Fertilizer

^aAll Vitazyme applications were at 1.5 liters/ha over the soil and leaves when the fertilizer was applied. ^bMeans followed by the same letter are not significantly different at P=0.05 according to Duncan's Multiple Range Test. ***P=0.001.

Increase in yield with Vitazyme alone: 43%

Vitazyme with no fertilizer boosted grass yield greatly — by 43% — but with all levels of fertilizer Vitazyme did not boost the yield above the 150 kg/ha N application. This boost in yield with fertilizer over the untreated control at the same N level is usually observed, but not in this study. It is theorized that excessive N was made available with Vitazyme, suppressing growth and yield.

Conclusions from the authors:

For the establishment period:

- The application of 1.5 L/ha of Vitazyme increased yield and reduced the proportion of dead material.
- The best moment to apply the product was immediately before planting: the product is applied in the furrow bottom immediately after furrow opening, and right away planting and covering is carried out.
- The dosage of Vitazyme did not influence establishment.

For the production period:

- When no fertilizer or irrigation was applied, Vitazyme increased yields.
- The best yield was reached when Vitazyme was applied 28 days after cutting, but did not differ with the application immediately after cutting.
- When 75 kg/ha N/ha + split Vitazyme is applied after each cutting during the rainy season, similar yields are reached as when 150 kg/ha N fertilizer is applied.

Recommendations

- 1. Apply 1.5 L/ha of Vitazyme at planting.
- 2. If no fertilizer is available, apply 1.5 L/ha of Vitazyme after each cutting.
- 3. If nitrogen fertilizer is available, apply 75 kg N/ha and split 1.5 L/ha Vitazyme, after each cutting, during the rainy season.
- 4. Studies on split application of Vitazyme dosages are recommended.
- 5. Economic analyses should be implemented.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2005 Crop Results

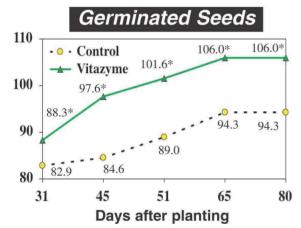
Vitazyme on Pennisetum Purpureum

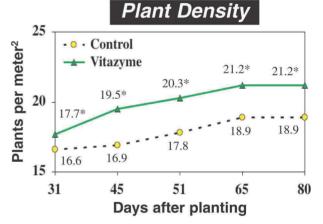
Researcher: Rafael Garcia, Ph.D.

Variety: Pennisetum purpureum cv. Cuba CT-115

Planting date: September, 2004

Location: Cuba *Growth stage*: new planting *Tillage*: unknown


Experimental design: A uniform test area was marked off in 27m² plots, upon which two treatments were established in a completely randomized design (four replicates). Evaluations were made of plant growth characteristics as well as leaf pigment content.



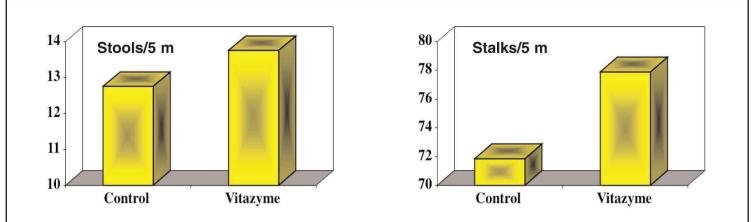
4. Vitazyme

Fertilization: none

Vitazyme applications: 13 oz/acre (1 liter/ha) at planting *Germination and growth results*:

*Significantly greater at P=0.001.

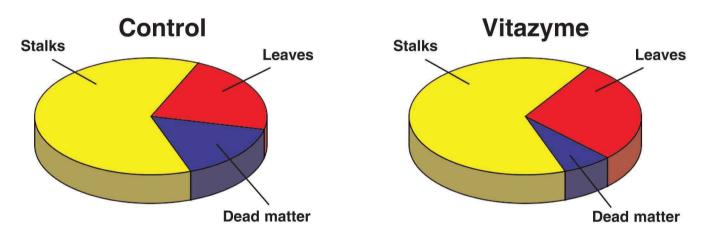
*Significantly greater at P=0.001.


Stool and Stalk Density

Treatment	Stools	Change	Stalks*	Change
	stools/5 m	stools/5 m	stalks/5 m	stalks/5 m
Control	12.75		71.87 b	
Vitazyme	13.75	1.00 (+8%)	77.88 a	6.01 (+8%)

*Means followed by the same letter are not significantly different at P=0.05.

Increase in stools with Vitazyme: +8%


Increase in stalks with Vitazyme: +8%

Leaves, Stalks, and Dead Tissue Composition of Total Tissue

Treatment	Leaves*	Change	Stalks	Change	Dead matter*	Change
			percent	of total tissue		
Control	22.12 b		62.14		15.74 a	
Vitazyme	28.32 a	+6.20	64.75	+2.61	6.93 b	-8.81

*Means followed by the same letter are not significantly different at P=0.01 (for leaves), and P=0.001 (for dead matter).

Dry Matter Content of Leaves, Stalks, and Whole Plants

Treatment	Leaves	Change	Stalks	Change	Whole plant	Change
			% of	dry matter		
Control	31.45		28.00		28.19	
Vitazyme	32.94	+1.49	28.95	+0.95	29.35	+1.16
<u>Yield results</u> :						
Treatment	Exach O	hanna Dur	Change	1.001/00**	Change Deed	Change

Treatment	Fresh matter*	Change	Dry matter*	Change	Leaves**	Change	Dead tissue**	Change
				tons/ha				
Control	9.53 b		2.69 b		0.59 b		0.42 a	
Vitazyme	10.41 a	0.88 (+16%)	3.10 a	0.41 (+15%)	0.86 a	0.27 (+46%)	0.21 b	0.21 (-100%)

*Means followed by the same letter are not significantly different at P=0.05.

**Means followed by the same letter are not significantly different at P=0.01.

Changes with Vitazyme

Increase in fresh matter yield: +16% Increase in dry matter yield: +15% Increase in leaf yield: +46% Decrease in dead tissue yield: -100%

Leaf pigment effects:

Leaf Photosynthetic Pigment Content

Treatment	Chlorophyll a	Change	Chlorophyll b	Change	Carotenoids*	Change
			mg/dn	n ²		
Control	1.73		0.71		0.44 b	—
Vitazyme	1.93	0.20 (+12%)	0.71	0	0.55 a	0.11 (+25%)

*Means followed by the same letter are not significantly different at P=0.01.

<u>Conclusions</u>: In this Cuban trial with the forage grass *Pennisetum purpureum* cv. Cuba CT-115, Vitazyme produced several significant improvements in grass growth and quality.

Changes with Vitazyme

Increase in chlorophyll a: +12% Increase in carotenoids: +25%

- 1. Germination was increased throughout the 80-day test period.
- 2. Plant density was improved at every stage during the 80-day growth period, with 2.3 more plants per square meter with Vitazyme at 80 days.
- 3. Stool and stalk density at the end of the test period were both increased with Vitazyme, by 8% in each case.
- 4. The relative composition of leaves, stalks, and dead tissue was much more favorable for the Vtiazyme treated grass, with a greater percentage of leaves and stalks and a reduction of dead tissue.
- 5. The dry matter content of the entire plant was higher with Vitazyme.
- 6. Vitazyme produced a 16% higher fresh yield, a 15% higher dry matter yield, a 46% greater leaf yield, and only half the dead tissue as the control.
- 7. Both the chlorophyll and carotenoid photosynthetic pigments were increased by the Vitazyme versus the control grass.

Vitazyme has been shown in this study to a powerful adjunct to typical management practices for the production of *Pennisetum purpureum* in Cuba.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2004 Crop Results

Vitazyme on Hay

Farmer/Researcher.Nelson GerlachLocation:Far Hills, New JerseySoil type:silty clayVariety:orchard grass, timothy, red cloverAge:matureCutting date:about June 15Experimental design:A 10-acre hay field was divided into two equal parts.Half of the field was leftuntreated and the other half was sprayed with Vitazyme to evaluate the product's effects on hay yield.Allother practices were the same for both halves.Output

1. Control

2. Vitazyme

Fertilization: 200 lb/acre 19-19-19% N-P₂O₅K₂O in late April

Vitazyme application: 13 oz/acre sprayed on the treated half on May 1

<u>Yield results</u>: The hay was cut, dried, and baled as standard rectangular bales. Then the bales for the two five-acre parels were counted. Each bale weighed approximately 50 pounds.

Treatment	Hayyield	Hay yield	Increase	Value of increase•
	bales/5acres	lb/acre	lb/acre	\$/acre
Control	290	2,900	_	_
Vitazyme	315	3,150	250 (+ 9%)	\$15.00

*Based upon a value of \$3.00/50 lb bale.

Increase in hay yield: + 9%

Increase in hay value" + \$15.00/acre

<u>Conclusions</u>: In this New Jersey on-farm hay trail with Vitazyme, the product increased both the yield (+9%) and income (+ \$15.00/acre) of the crop as a result of only one application applied around spring greenup time.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2004 Crop Results

Vitazyme on Alfalfa

Vitazyme and Rhizobium Bacteria Compatibility

Researcher: Paul W. Syltie, Ph.D.

Gladewater, Texas

Soil type: fine sandy clay loam

Planting rate: thinned to 12 plants/pot

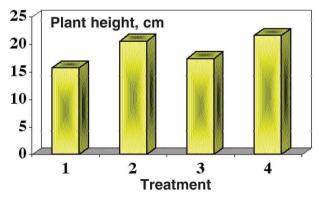
Location: Vital Earth Resources Research Greenhouse, Variety: common Pot size: 1 gallon Planting date: December 30, 2002

Experimental design: A greenhouse study was arranged with four treatments and seven replicates, using 1 gallon commercial plastic pots. The study was designed to evaluate if Vitazyme, premixed with rhizobium bacteria inoculant before planting, will inactivate the bacteria. Analyses of parameters were made using analysis of variance with CoHort software.

Treatment	Vitazyme*	Rhizobium**	
1	0	0	* Pure, undiluted product
2	0	Х	** "Nitragin" inoculant [Rhizobium meliloti] for
3	Х	0	alfalfa; expiration date December 31, 2004
4	Х	X	······································

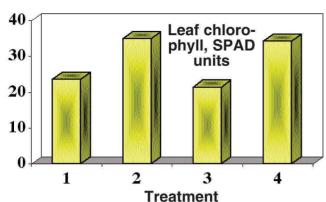
Vitazyme and Rhizobium treatments: Treatment 2, a slurry was made of the rhizobium and alfalfa seeds, and soaked for 1 hour before planting; Treatment 3, alfalfa seeds were soaked for 1 hour in undiluted Vitazyme before planting; Treatment 4, alfalfa seeds were soaked with undiluted Vitazyme and rhizobium for 1 hour before planting.

Harvest date: February 24, 2004, 89 days after planting


Harvest results: At harvest all roots were washed free of soil, and the plants were laid out and measured for height, leaf chlorophyll, fresh nodule weight, nodule type, and then dried in a drying oven at 115°F for 20 hours to evaluate dry weight.

Treatment	Plant height*	Change
	cm	cm
4	21.6 a	5.9 (+38%)
2	20.6 a	4.9 (+31%)
3	17.4 b	1.7 (+11%)
1	15.7 b	~ ×

*Means followed by the same letter are not significantly different at P=0.10 according to the Student-Newman-Keuls Test. LSD_{0.10}=3.1 cm.

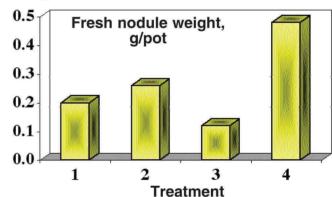

Increase in height (Vitazyme + Rhizobium): 38%

Both Vitazyme + rhizobium (Treatment 4) provided the best growth to giver the tallest plants, followed by rhizobium alone, which was significantly as tall as Treatment 4. Without rhizobium nitrogen fixation to encourage growth, plant growth was significantly less.

Leaf Chlorophyll

Both treatments receiving rhizobium (2 and 4) had the highest chlorophyll values, since these symbiotic bacteria fixed more nitrogen for chlorophyll synthesis. Lower chlorophyll for Vitazyme alone (Treatment 3) resulted from stimulated plant growth (carbon fixation) without commensurate adequate nitrogen fixation to maintain high-nitrogen chlorophyll levels.

Treatment	Nodule weight*	Change
	g	g
4	0.48 a	0.28 (+140%)
2	0.26 b	0.06 (+30%)
1	0.20 b	
3	0.12 b	(-)0.08 (-40%)


*Nodules were carefully removed from the roots for each plant. Means followed by the same letter are not significantly different at P=0.10 according to the Student-Newman-Keuls Test. LSD_{0.10}=0.19 g.

Increase in nodule weight (Vitazyme + Rhizobium): 140%

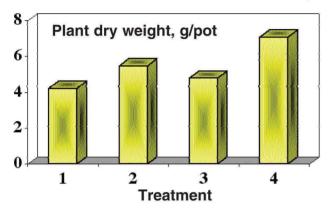
Treatment	Chlorophyll*	Change
	SPAD	units
2	34.9 a	11.3 (+48%)
4	34.2 a	10.6 (+45%)
1	23.6 b	· · ·
3	21.4 b	(-)2.2 (-9%)

*An average of seven values per pot, using a Minolta SPAD chlorophyll meter. Means followed by the same letter are not significantly different at P=0.10 according to the Student-Newman-Keuls Test. $LSD_{0.10}=3.9$ SPAD units.

Increase in leaf chlorophyll (Vitazyme + Rhizobium): 45%

Total fresh nodule weight was by far the greatest for Treatment 4 (Vitazyme + rhizobium), while Treatment 2 (rhizobium alone) gave the second highest nodule weight. Without added rhizobium bacteria the nodule weights were the least.

Nodule Type


There were clearly two types of nodules detected during this investigation, one very white colored that was apparently a native, wild type present in the soil. These were seen especially in Treatments 1 and 3 where no rhizobium was applied. Treatments 2 and 4 had quite different rose-colored rhizobium nodules besides the white native species. It was apparent that the rose-colored nodules were derived from the introduced rhizobium bacteria, which fixed abundant nitrogen, since the plants having these nodules in their root zones were uniformly darker green — having more chlorophyll — and contained an abundance of red-colored leghemoglobin, the compound present in rapidly nitrogen-fixing molecules.

The proportions of the two nodule types for the four treatments are given on the next page.

Nodule Weight

Treatment	Chlorophyll*	Change
	% of total no	dules
1	100	0
2	28	72
3	100	0
4	33	67

Dry Weight

Treatment	Chlorophyll*	Change	
	grams	grams	
4	7.08 a	2.86 (+68%)	
2	5.47 b	1.25 (+30%)	
3	4.79 bc	0.57 (+8%)	
1	4.22 c		

*Means followed by the same letter are not significantly different at P=0.10 according to the Student-Newman-Keuls Test. $LSD_{0.10}=1.21$ g.

Vitazyme plus rhizobium (Treatment 4) caused by far the greatest dry matter increase (+68%), while rhizobium alone gave the second largest increase ... 30% above the control. Vitazyme alone (Treatment 3) was statistically equal to the rhizobium treatment, and was also equal to the control (Treatment 1).

Increase in dry weight (Vitazyme + Rhizobium): 68%

Conclusions: This greenhouse study on alfalfa with Vitazyme and rhizobium bacteria revealed the following points:

- 1. Vitazyme had a strongly positive synergism with rhizobium bacteria in this alfalfa study, exceeding the control treatment in terms of dry weight (+68%), plant height (+38%), leaf chlorophyll (+45%), and nodule weight (+140%). All of these values, except for leaf chlorophyll, exceeded the other three treatments.
- 2. Added rhizobium bacteria had a strong positive effect in boosting plant height, leaf chlorophyll, nodule weight, and plant dry weight, especially with Vitazyme.
- 3. The added *Rhizobium meliloti* inoculant was much more effective at increasing nitrogen fixation for alfalfa plants than was the native rhizobium species.
- 4. There was no negative interaction between Vitazyme and rhizobium bacteria when they were mixed prior to seeding. Rather, there was a positive interaction between the two products during the course of the experiment.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

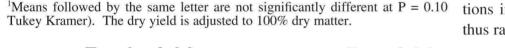
2002 Crop Results

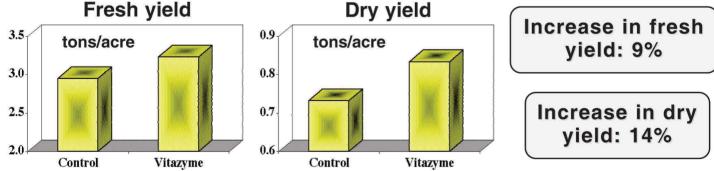
Vitazyme on Alfalfa (Regrowth)

Analyzed by the University of Wisconsin Alfalfa/Grass Evaluation System – Milk 2000

Researcher:Ronald StutzmanInstitution:Stutzman's Research FarmLocation:Arkport, New YorkVariety:Doebler's PhirstPlanting date:June 10, 2002Soil type:silt loamExperimental design:A small plot design with five replicates in a randomized complete block design waslaid out in an alfalfa field that had been established in the spring. This test utilized regrowth after the first cutting.Forage samples were collected and packed in ice in a cooler, and sent to the laboratory at Marshfield,Wisconsin.

1. Control 2. Vitazyme


Fertilization: none


Vitazyme application: 13 oz/acre to the leaves and soil at 3 to 4-inch height of regrowth, on August 15 *Harvest date*: October 1, 2002

<u>Yield results</u>: The forage was harvested, and sent to Wisconsin for weighing and analysis, and plot values were statistically analyzed for significant differences using COHORT software.

Treatment	Fresh yield ¹	Change	Dry yield ¹	Change
		tons/a	acre	
Control	2.95 a		0.732 a	
Vitazyme	3.23 a	+0.28 (+9%)	0.834 a	+0.102 (+14%)

Vitazyme increased the yield of Alfalfa above the control by 9% (fresh weight), or 14% (dry weight). These differences are not significant due to sizable variations in yield among the various plots, thus raising the experimental error.

Forage quality results: Samples of the forage from each plot were sent to the University of Wisconsin Alfalfa/Grass Evaluation Laboratory in Marshfield, Wisconsin. The values determined were then statistically analyzed to determine significant differences of treatment means using COHORT software and the Tukey-Kramer test. Differences in values within each mean were quite large, so no significant differences were detected.

Treatment	crude protein (CP)	Acid detergent fiber (ADF)	Neutral detergent fiber (NDF)	Digestible NDF	Ash
	% of dry matter	% of dry matter	% of dry matter	% of NDF	% of dry matter
Control	23.2 a	19.6 a	27.08 a	43.1 a	11.3 a
Vitazyme	22.8 a	20.1 a	28.08 a	43.2 a	11.6 a
100					
Treatment	Non-fibrous carbohydrate (NFC)	Total digestible nutrients (TDN)	Net energy of lactation (NEL)	Dry matter intake (DMI)	Forage, % of total DM
	% of dry matter	% of dry matter	M cal/lb	lb/day	%
Control	39.1 a	66.5 a	0.69 a	43.5 a	0.83 a
Vitazyme	38.2 a	65.5 a	0.67 a	41.5 a	0.79 a

Milk production calculations: Milk 2000 calculations were made based upon the quality and yield parameters shown above.

Treatment	Milk per day from the forage ¹	Milk per ton of forage ¹	Milk per acre ¹	Change
	lb/day	lb/ton	lb/acre	lb/acre
Control	62.2 a	3,103 a	2,513 a	
Vitazyme	57.7 a	3,031 a	2,245 a	+ 268
1 m m m m m		81 D. 194	100 per 11 per 11 per	

Even though the differences were not significant, the Vitazyme treated alfalfa was calculated to produce 268 lb/acre more milk than the untreated control.

¹Means followed by the same letter are not significant at P = 0.10 according to the Tukey-Kramer test.

Income increase: With milk at \$15.00/cwt, the increase in milk value is 2.68 cwt/acre, or \$40.20/acre for this second cutting of alfalfa forage.

Increase in milk income: \$40.20/acre

<u>Conclusions</u>: Vitazyme increased alfalfa production by 14% in this replicated New York study, while forage quality was not affected significantly in this test. In other tests forage quality has been substantially improved with Vitazyme. This translated to a \$40.20/acre increase in milk output as calculated by the University of Wisconsin's Milk 2000 Alfalfa/Grass Evaluation System.

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2002 Crop Results

Vitazyme on Alfalfa (New Seeding)

University of Wisconsin Alfalfa/Grass Evaluations – Milk 2000

Researcher:Ronald StutzmanLocation:Stutzman's Research Farm, Arkport, New YorkVariety:Doebler's EX 468Soil type:silt loamPlanting date:July 1, 2002Experimental design:A small plot designwith five replicates in a randomized complete block arrangement,with two treatments and five replications.

2. Vitazyme

1. Control

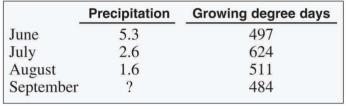
Samples of the forage were collected at harvest from each plot, packed in ice, and sent to the University of Wisconsin Alfalfa/Grass Evaluation Laboratory in Marshfield, Wisconsin, from which Milk 2000 calculations were made. Data were statistically analyzed using Analysis of Variance and the Tukey-Kramer test. *Fertilization*: none

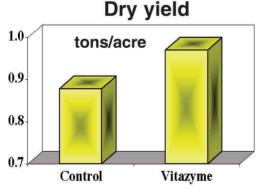
Vitazyme application: 13 oz/acre to the seeds and soil before the seeds were rolled into the soil

Harvest date: October 1, 2002

Weather during the growing period: Rain and cold temperatures early in the season required replanting twice before a good stand was established.

<u>Yield results</u>: Forage was harvested on October 1, 2002, and sent to the University of Wisconsin Alfalfa/Grass


Evaluation Laboratory for weighing and yield determinations.


Treatment	Wet yield ¹	Change	Dry yield ²	Change		
	tons/acre					
Control	3.34 b		0.878 b			
Vitazyme	3.54 a	0.20 (+6%)	0.970 a	0.092 (+10%)		

¹Means followed by different letters are significantly different at P = 0.21 according to the Tukey-Kramer test.

²Means followed by different letters are significantly different at P = 0.04 according to the Tukey-Kramer test. Dry yield is adjusted to 100% dry matter.

Increase in dry yield: 10%

<u>*Quality results*</u>: Several forage quality parameters were measured at the laboratory in Marshfield, Wisconsin, but few of them showed a significant difference between the two treatments.

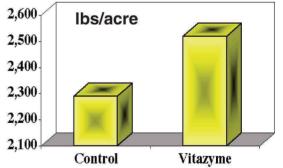
Treatment	Crude protein (CP)*	Acid detergent fiber (ADF)	Neutral detergent fiber (NDF)	Digestible NDF	Ash
	% of dry matter	% of dry matter	% of dry matter	% of NDF	% of dry matter
Control	21.0 a	27.4 a	36.0 a	40.9 a	11.3 a
Vitazyme	21.6 a	27.7 a	36.0 a	38.4 b	10.7 a
Level of significance	P = 0.32	P = 0.82	P = 0.96	P = 0.03	P = 0.43
LSD _{0.01} (if valid)				LSD = 1.6	
* Means followed by different letters are significantly different as $P = 0.10$.					

Treatment	Nonfibrous carbohydrate (NFC)*	Net energy for lactation (NEL)*	NRC 48-hr digestibility*	Base forage dry matter intake*
	% of dry matter	Mcal/lb		lb/day
Control	31.7 a	0.613 a	30.66 a	32.36 a
Vitazyme	33.0 a	0.613 a	28.99 b	32.27 a
Level of significar	nce $P = 0.16$	P = 0.90	P = 0.08	P = 0.95
LSD _{0.01} (if valid)			LSD = 1.52	

* Means followed by different letters are significantly different at P = 0.10.

Only digestible neutral detergent fiber and the NRC 48-hour digestible neutral detergent showed significant differences between the two treatments. Thus, there appeared to be little difference in forage quality between the Vitazyme and control treatments, which is contrary to the other forage tests that have shown a superior forage quality when Vitazyme was used.

<u>*Milk output results*</u>: The yield and quality parameters were used by the Milk 2000 program to calculate estimated milk output for each plot harvested.


Treatment	Milk per day from the forage*	Milk per ton of forage*	Milk per acre*	Change
	lb/day	lb/ton	lb/acre	lb/acre
Control	36.6 a	2,614 a	2, 290 b	
Vitazyme	35.0 a	2,583 a	2,519 a	+229 (+10%)
Level of significance	P = 0.49	P = 0.45	P = 0.03	
LSD _{0.1} (if valid)			LSD = 155	

* Means followed by different letters are significantly different at P = 0.10.

The milk per day from the forage, and the milk per ton of forage, were not significantly different for the two treatments, but **the milk output per acre was significantly improved (at P = 0.03)** by Vitazyme over the control, by 10%, or 229 lb/acre, a reflection of the improved overall alfalfa yield (+10%).

Increase in milk per acre: 229 lb/acre

Income increase from the milk: At a price of \$15.00/cwt for the milk, the increased income for the use of Vitazyme on this alfalfa is \$34.35/acre

Increase in milk income: \$34.35/acre

<u>Conclusions</u>: In this alfalfa forage study in New York, Vitazyme significantly increased the yield for the first cutting, by 10% over the control. Few quality parameters were significantly changed. however, so that the total milk output per acre was also increased by 10% above the control, which amounted to a \$34.35/acre increase in milk income.

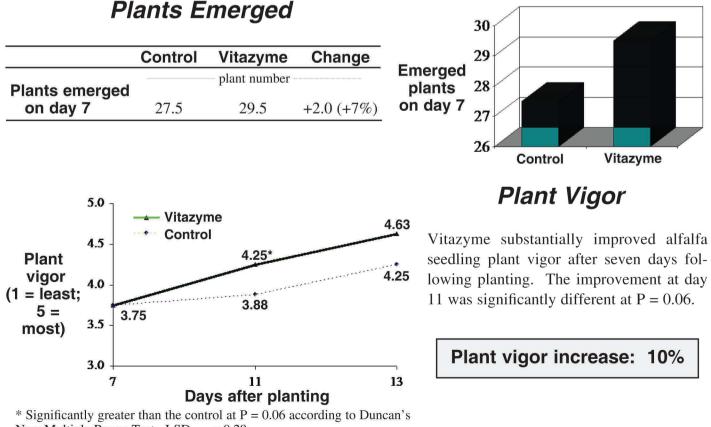
706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2000 Crop Results

Vitazyme on Alfalfa (Tray Study)

Agricultural Custom Research and Educational Services

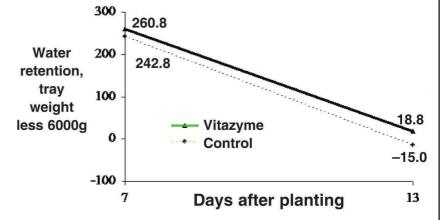
Researcher: Bertel Schou, Ph.D.


Variety: Unknown

Location: Cedar Falls, Iowa

Soil type: Maxfield silt loam, surface soil

<u>Tray size and type</u>: 10 x 21 inches, slotted tray inside a solid tray, and a paper liner below <u>Experimental design</u>: Trays were placed under full-spectrum grow-lights that shone 14 hours per day, with an air temperature of 65 to 85°F. Each tray had 6,000 grams of the sieved silt loam soil, which formed a twoinch layer in which two furrows were made. Twenty seeds were placed every 2 inches in the two furrows and covered. Then a measured amount of water was added, first to obtain ideal planting conditions, and subsequent waterings were accounted for as well to give a net water usage. Typical field water loss is 0.25 to 0.35 in/day. Four replicates were used in the study. Measurements were taken 7, 11, and 13 days after planting.


Vitazyme application: The equivalent of 13 oz/acre Vitazyme was applied to the soil surface at planting. *Growth parameters measured*: Most differences in growth parameters for the two treatments were not significant, though differences did appear and are shown here. A significant difference in plant vigor did occur.

New Multiple Range Test. $LSD_{0.10} = 0.29$.

Soil and Plant Water Retention

The amount of water remaining in the trays, after additions were subtracted, was highest for the Vitazyme trays. This shows that Vitazyme reduced water loss from the soil and plants, and thus improved water use efficiency.

<u>Conclusions</u>: Vitazyme applied to alfalfa in this study showed that the product can significantly improve plant vigor, enhance early plant emergence, and reduce plant and soil water loss, thereby increasing water use efficiency.

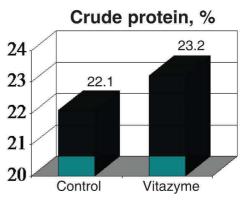
706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

1999 Crop Results

Vitazyme on Alfalfa

Farmer:John PerieraLocation:Tracy, CaliforniaVariety:YoloCutting:fourthExperimental design:An alfalfa field was divided into two portions, one part treated with Vitazyme and the
other part left untreated.Solution:</td

1. Control 2. Vitazyme


Fertilizer treatments: none

Vitazyme application: 13 oz/acre by air to the new growth, shortly after the third cutting had been harvested. *Yield results*: None were collected on the fourth cutting.

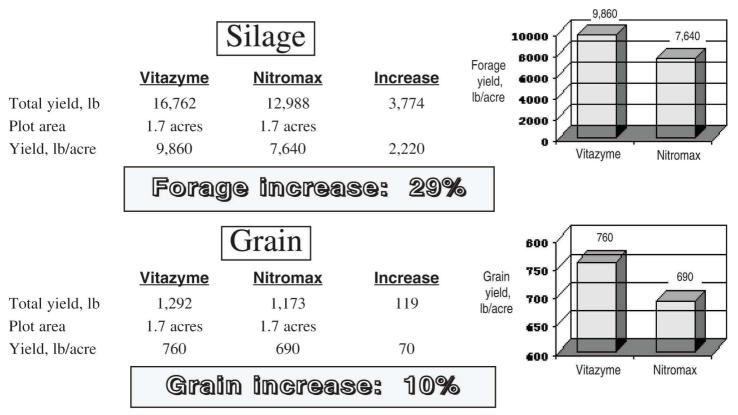
<u>Quality results</u>: Samples of the two treatments were sent to J.L. Analytical Services, Inc., at Modesto, California, for various quality determinations. All determinations are expressed on a 100% dry basis.

Parameter	<u>Control</u>	<u>Vitazyme</u>
Acid detergent fiber, %	30.6	30.5
Crude protein, %	22.1	23.2
Total digestible nutrients, %	59.4	59.5
Net energy of lactation, Mcal/lb	0.605	0.606

Increase in crude protein: 1.1 percentage point

706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

1998 Crop Results


Vitazyme on Ryegrass (silage and grain)

Researcher:Karl HallenLocation:Clyde, New YorkPlanting date:fall of 1997, broadcast into standing sorghum/sudangrass ("sudax")Variety:bin run, variety unknownSoil type:A field of 3.4 acres was divided into two equal parts, 1.7 acres receiving Vitazyme andthe other 1.7 acres receiving another biostimulant called Nitromax.

- 1. Vitazyme
- 2. Nitromax

Fertility treatments: about 15 tons/acre of manure in 1997

Vitazyme and Nitromax applications: 13 oz/acre sprayed on the plants and soil at spring greenup *Harvest date*: mid-May for forage, when the crop was just coming out of the boot stage; August for grain *Harvest method*: the cut ryegrass was baled at 60% moisture, and wrapped in plastic; the grain was combined *Yield results*: Bales from both treatments were weighed.

<u>Conclusions</u>: Vitazyme, compared to Nirtomax, provided a superior yield increase for both forage (29%) and grain (10%) with ryegrass.